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The kinematical constraints satis6ed by helicity amplitudes are derived by two methods. One uses extra
kinematical symmetries, which are present whenever there are constraints. The other uses the connection
between M functions and helicity amplitudes. It is shown that the threshold and pseudothreshold con-
straints do not imply conspiracies between different Regge trajectories. The transitions between the difer-
ent sets of s=0 constraints (which change when masses become equal) are described.

I. INTRODUCTION

INEMATICAL constraints' 4 have been found

among helicity amplitudes at thresholds, pseudo-
thresholds $s= (difference of masses)'j, and at s=O.
In this paper we will show how these constraints may
be derived from Lorentz invariance and the special
kinematical symmetries which appear at these points.
The method of derivation and the form in which the
relations are obtained will allow a discussion of some

of their general features. We will also show that some
of the constraints are very closely related to the
kinematical singularities' of the helicity amplitudes.
We wi11. present an independent derivation of these
relations, based on the analyticity of 3E functions, '
which yields both the constraints and singularities

simultaneously, and which may be extended to two-

body thresholds and pseudothresholds in production
reactions. Finally, we describe the behavior of the
helicity amplitudes near s=0 in the transition from

unequal to equal mass kinematics.
Except for an extension of the threshold and pseudo-

threshold relations to two-body thresholds and pseudo-
thresholds in multiparticle reactions, none of the
constraints which we discuss here are new. Many of

the constraints were first found for restricted values

of the masses and spins of the reacting particles, and
Cohen-Tannoudji, Morel, and Navelet, ' and Fox' have

given unified treatments of these relations. The usual

method involves an analysis of the singularities of

helicity amplitudes and crossing matrices. ~

The symmetry approach, which we will use to derive

all the relations, was first used in this connection by
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Bardakci and Segre, ' who used it to derive the s=Q
constraints in (equal mass) —+ (equal mass) scattering.
The idea it exploits is this. In two-body scattering
reactions there are ordinarily three linearly independent
momenta. It may happen though, that only two of the
momenta are independent, and when this happens there
exist Lorentz transformations which do not change
any of the momenta, and act only on the spins of the
reacting particles. These Lorentz transformations do
not connect processes going on in different rest frames,
but instead relate a process with one set of spins to
the same process but with different spins. Lorentz
invariance then yields a set of linear relations between
the helicity amplitudes for the process. In the center-
of-mass frame this phenomenon occurs in forward and
backward scattering, at s=0, and at thresholds and
pseudothresholds. The kinematical constraints of for-
ward and backward. scattering, the vanishing of each
amplitude like sin"0, where e is the spin Qip along the
direction of motion, have been known since antiquity
and will receive no discussion here.

Threshold constraints in two-body scattering were
noted by Jones "and Jackson and Hite "and Franklin"
showed that these constraints are a consequence of the
threshold behavior of partial wave amplitudes. In Sec.
II we apply the analysis to thresholds and pseudo-
thresholds and discover the relations derived by Cohen-
Tannoudji, Morel, and Navelet. The analysis begins
by constructing the momenta near these values of s.
It is the form which the momenta take at these special
points that determines which Lorentz transformations
leave them unchanged, and through that the form of
the kinematical constraints. These are found by ex-
panding the Lorentz transformation rule for the ampli-
tudes to first order in the Lorentz transformation, and
then evaluating it for the Lorentz transformations
which leave the momenta unchanged. The constraints
on the derivatives of the amplitudes are then found by
a repetition of this process.

The result is simplest when expressed in terms of
amplitudes with spins quantized along the axis per-
pendicular to the reaction plane. That amplitude in
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which the combined spin of the two particles at thresh-
old or pseudothreshold is greatest is the largest, and
for each unit of spin less than the maximum, the
amplitude vanishes like (s—ss)"s with respect to the
most singular amplitude, where so is the threshold or
pseudothreshold value of s. Only the spins of the
particles at the threshold or pseudothreshold are rele-
vant to the constraints. The beahvior of the leading
amplitude is determined by the kinematical singu-
larities which occur at the same points as these con-
straints. For a maximum total spin of S, the most
singular amPlitude goes like (s—ss) s". Thus, if s„
labels the total perpendicular-axis spin of the two
particles at the threshold or pseudothreshold, the linear
combination of helicity amplitudes corresponding to
this spin has the threshold kinematical behavior

We argue that the relations at thresholds and at
pseudothresholds for unequal-mass particles are not
conspiracy relations; that is, they cannot be satisfied
at large momentum transfer by the cancellation of
contributions from Regge trajectories with different
quantum numbers. Although we defer the details until
Sec. II, the line of argument is as follows. The threshold
and unequal-mass pseudothreshold constraints are the
statement that the raising operator for the total per-
pendicular-axis spin of the outgoing particles gives
zero when applied to the helicity amplitudes. Because
the outgoing particles can be taken to have zero
three-momenta, this is equivalent to the statement
that the raising operator for the total angular mo-
mentum of these particles annihilates the helicity
amplitudes

Since the quantum numbers which label trajectories
commute with angular momentum, the relations can
always be written so as to involve amplitudes which
receive contributions from Regge trajectories with only
one set of values of these quantum numbers in each
relation. Thus they are not conspiracy relations.

In Sec. III we turn our attention to the relations
which obtain at s=O. As has been known since their
discovery, these relations do connect different Regge
trajectories, and in the literature they have become
known as conspiracy conditions. The first of these was
found in EE-+EE scattering by Gribov and Volkov.
(Equal mass) ~ (unequal mass) constraints have been
investigated by Diu and Le Bellac," Hogaasen and
Salin' and by Stack's while Frautschi and j'ones'
have examined (unequal mass) —+ (unequal mass)
scattering. As we have noted, the case of (equal mass) —+

(equal mass) scattering has been examined by this
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method by Bardakci and Segre. The analysis proceeds
just as at thresholds. Depending on whether two
particles have equal or unequal masses, the form that
their momenta take at s=O is very different. Since the
kinematical constraints follow from the momentum
configuration, we must treat the cases where neither
one or both at the incoming and outgoing channels
contain equal-mass particles separately; we expect,
and obtain, different constraints in the three cases.

The results are as follows: Take the scattering plane
to be the xs plane and treat helicity as spin along the
s axis. For (equal mass) ~ (equal mass) scattering,
the linear combinations of helicity amplitudes corre-
sponding to total x-axis spin nz (total of all four spins)
go like

f ~g[m[/s

near s=O. If the masses of one pair of particles are
unequal, only the spins of the other pair are relevant,
and the relations turn out to be just the same as the
pseudothreshold constraints at pseudothreshold in the
equal-mass particles. The linear combination of helicity
amplitudes corresponding to y-axis spins v~ and r2 of
the equal-mass particles behaves like

When both sets of particles have unequal masses, we
find no constraints.

The algebraic form of the constraints is not by itself
suKcient to determine the presence or absence of con-
spiracies, and the argument excluding them at thresh-
olds and unequal-mass pseudothresholds also uses the
momentum configurations at these points. The con-
ventional analysis for the presence of conspiracies
involves first evaluating the contribution of each Regge
trajectory to the helicity amplitudes, and then seeing
if different kinds of trajectories are related by the
constraints. The contribution of any given trajectory
to a helicity amplitude depends, among other things,
on the kinematical factors associated with the branch
points at the boundary of the physical region (the
"half-angle factors")'r and these factors are very
different at s=0 than they are at unequal-mass pseudo-
thresholds. The difference rejects the fact that the
momentum configurations are different in the two
situations. Thus a kinematical constraint can imply
conspiracies at s=0,"" even though it cannot at
unequal-mass pseudothresholds.

A useful distinction can be made between those
constraints which are accompanied by singularities in
the helicity amplitudes and those which are not. The
latter category contains only the constraints at forward
and backward scattering, and at s=o in (equal mass) —+
(equal mass) scattering. For these constraints the
previous discussion is complete. But when singularities
are present, they must 6rst be removed in order to

'~L. Bertocchi, Heidelberg Conference and CERN Report No.
TH 835, 1967 (unpublished).
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find the constraints. Also, when singularities are present,
the kinematical syrnmetr y which we exploit appears
only in Lorentz frames in which some of the momentum
components are infinite, and so the existence of the
symmetry argument seems to rest on the presence of
the singularities.

In Sec. IV we demonstrate the closeness of this
relationship by deriving the singularities and con-
straints simultaneously from a single argument which
makes no use of the symmetry considerations which
dominate Secs. II and III. This derivation is based on
3f functions, whose relevant properties we review, and
their connection to helicity amplitudes. Stapp' has
used this method to derive the kinematical singularities
in helicity amplitudes, and Stack"" has used it to get
the s=O constraints in (equal mass) ~ (unequal mass)
scattering. The idea here is just to write down the
connection between M functions and helicity ampli-
tudes, and to explicitly display the singularities and
zeros implicit in the relation. M functions are supposed
to be free of kinematical singularities and zeros, so the
singularities and zeros in the expression which relates
them to helicity amplitudes must appear in the helicity
amplitudes. The singularities are just those of Wang,
and the zeros are our previously discussed constraints.

M functions are finite only when the momenta at
which they are evaluated are finite, and so we must
relate center-of-mass frame helicity amplitudes to 3f
functions evaluated in a frame where the momenta are
finite. Thus not only do we not use the kinematical
syrnrnetry in this derivation, but we are concerned with
M functions only in frames where there is no kinematical
symmetry. Parenthetically, we may note that the
assumption that the M functions are free of kinematical
singularities is used in the derivation of the helicity-
arnplitude crossing relations, and so this assumption is
present in the derivations of kinematical constraints
which proceed from an analysis of the singularities of
crossing matrices.

The constraints at s=O in (equal mass) -+ (equal
mass) scattering have no singularities associated with
them, they are not the result of a singular connection
between nonsingular M functions and helicity ampli-
tudes, and so they are not derivable by this method.
All the other constraints that we discuss, together with
the singularities, are equivalent to the statement that
3f functions are free of kinematical singularities and
zeros, but at s=O in (equal mass) ~ (equal mass)
scattering the M functions do have kinematical zeros.
It is from these, rather than from the connection
between M functions and helicity amplitudes, that the
(equal mass) -+ (equal mass) conspiracy relations arise.

By contrast, the symmetry method does give all the
constraints, but it requires as additional input a knowl-
edge of the kinematical singularities. It is also very
appropriate for the examination of the question of

18 H P. Stapp, Phys. Rev. 160, 1251 (1967).

which constraints imply conspiracies. However, it does
not generalize in a simple way to multiparticle re-
actions, which the HEI-function method does.

The singularities in the connection between 3f func-
tions and helicity amplitudes at thresholds and pseudo-
thresholds result only from the configuration of the
momenta of the two particles whose total energy is the
sum or diff erence of their masses, and the relations
depend only on the spins of these particles. This mo-
mentum configuration is the same no matter how
many other particles are involved in the reaction, and
so the threshold and pseudothreshold constraints hold
at a two-body threshold or pseudothreshold in a re-
action involving any number of particles.

In view of the fact that the s =0 constraints are so
different depending on whether a pair of masses is
equal or not, it is pertinent to ask how the amplitudes
behave when two unequal masses approach equality.
In Sec. V we give a qualitative description of these
transitions. We show how helicity amplitudes for
equal-mass particles are obtained from those for
unequal masses as a continuous limit, despite the fact
that the s =0 kinematical relations change abruptly
as the masses become equal. The transition from all
masses unequal to one pair equal is very simple to
describe. There are no s= 0 relations for unequal masses,
but there are relations at the pseudothreshold. The
pseudothreshold relations simply continue to hold
when, because the mass difference becomes zero, the
pseudothreshold moves to s=0.

The transition from one pair of masses equal to both
equal is more complicated. It is best described if we
remember that kinematical constrain ts and singu-
larities are a direct result of momentum configurations.
For ~s~ much greater than the (mass)' difference the
momenta are substantially what they would be if the
mass difference were zero, while for

~
s~ less than the

(ms, ss)2 difference they are very rapidly varying func-
tions of s. These rapid variations, with singularities at
s= 0 and pseudothreshold, are responsible for the kine-
matical constraints at these points. As the mass dif-
ference approaches zero, the rapid variations of the
amplitudes are confined to a progressively smaller
range of s, while equal-mass kinematics governs the
momentum configuration progressively nearer to s=0.
When the mass difference becomes zero, the range over
which the rapid variations take place collapses to a
point, and equal-mass kinematics becomes correct over
the entire range of s, establishing the equal-mass con-
straints. The use of equal-mass kinematics when mass
differences are very small but finite is justified because
the kinematical effects of the unequal masses are con-
fined to very smaLL range at s.

II. THRESHOLD AND PSEUDOTHRESHOLD
CONDITIONS

At a threshold or unequal-mass pseudothreshold for
a two-body scattering process, the center-of-mass
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momentum of one pair of particles vanishes, and so
all the momenta lie in a plane in four-space. The
freedom to make rotations which leave all the momenta
unchanged leads to a set of linear relations among the
helicity amplitudes. In contrast to the s=0 relations,
the form of these does not depend on the relative sizes
of masses involved. We will treat the case of threshold
or pseudothreshold for the outgoing particles.

In order to find the rotation which leaves all the
monienta unchanged, we will construct the momenta
near these special points. We take the momenta of the
outgoing particles along the s axis, and the momenta
of the incoming particles in the xs plane. At threshold,
they are

p, = (E„P.,O,P,),
p.=(~., -P., o, -P.),
p = ((I '+ e') '"0 0 e)

p»= (Pg» y»2)'&2 0, 0, —$).

The values of Ei, E2, and p'= p,'+p, ' are fixed by s
or, equivalently e, and have some finite limit as e —+ 0.
This is not true of the components p and p„however,
since in order for the momentum transfer t to differ
from the value it obtains at threshold in the physical
region (mi'+n»3' —2m3Ei), the limit of ep, must be
finite as e —+0. Since p'=p, '+p, ' is finite as a~0,
both p, and p, must diverge simultaneously. For real t,
as e~ 0, they become

p, -+ ~-1/e
(2)

At a pseudothreshold for unequal-mass particles the
same phenomenon occurs. The only differences are the
numerical values of Ei, E~, and p', and p» which becomes

p» ——(—(nz»2+a')"', 0, 0, —»). (3)

The values of p, and p, still diverge as shown by Eq.
(2)

Let us define »i to be the generator of rotations which
leave (p„0,p, ) unchanged in the limit e —» 0. Then g
is the limit of

8"=(P.!P )~.+J*

At a=0, the differential operator representing
annihilates all the momenta; from Eq. (2), g'& has the
limit

cation of prescribed Lorentz transformations, which
we will call boosts. A boost is a pure Lorentz trans-
formation along the +s axis followed by a rotation
through an angle less than or equal to x about an axis
in the xy plane. The helicity is the same as the s com-
ponent of the spin of the state at rest. The boosts are
determined by the momenta of the state, and we will
denote them by B(p). The Lorentz transformation
properties of these states are

A~P~)=D, „,&»(W(A, P)) ~APV)

=D„,& ~'(W- (A,p)) iAPV),

where the signer rotation is given by

W(A, P) =8 '(A.p)AB(p). .

Helicity amplitudes are matrix elements of S—1
between two particle helicity states. Their Lorentz
transformation law is, in a matrix notation (p repre-
sents all the momenta),

f(P) =D(w '(A, p))f(AP)

The representation D is the direct product of two
representations of Wigner rotations for the outgoing
particles with two conjugate representations for the
incoming particles. The infinitesimal form of this
relation will be useful in our applications. If A.= j —i'
is an infinitesimal Lorentz transformation, M a repre-
sentation of M as a differential operator acting on
functions of momenta, and W(A,P)=1—ilaw(M, P),
then Eq. (8) becomes

t D(w(M, P))™)f(p)=0.

Here the representation D is the direct sum of repre-
sentations of the generators of the Wigner rotations.

B. ThreshoMs

We wish to express the threshold constraints in terms
of helicity amplitudes, and so we use helicity states for
the incoming particles. However, at a threshold the
helicity state basis is singular. The singularity is a
result of the fact that the limit

lim
I p~)i ply

where by the last symbol we indicate that »i is a raising
operator for angular momentum quantized along the

y axis. Because J(„)+ annihilates all the momenta,
applying it to a helicity amplitude at t.=0 will lead to
a set of linear relations among the amplitudes.

A. Helicity Amylitudes

Helicity eigenstates are obtained from states at rest
and with spin quantized along the s axis by the appli-

is ill defined, since it depends on the direction through
which y approaches zero. To avoid this coordinate
singularity, we will use Wigner basis states for the
outgoing particles. Like helicity states, these are ob-
tained from states at rest by a Lorentz transformation
which we will also call a boost, but with 8 a pure
Lorentz transformation along the p axis. The connection
between Wigner and helicity states is indicated by the
comparison of their boosts. For the momenta we have
chosen for particles 3 and 4, Eq. (1) (e&0), the con-
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nection is

I p l&)wigner
I p g)helicity

I p y)wigner ( 1)s4+X
I p l&)helicity (10)

vanishes like e". We may state this result as a set of
derivative relations on the amplitude:

LD'""(J+)3"+'(d"/de")f(p) I.=o=o. (15)

It is thus a triviality to transform the Wigner-ampli-
tude relations we will obtain into helicity-amplitude
relations.

We now assume that the threshold kinematical
singularities have been removed from the mixed
Wigner helicity amplitudes f(p) by multiplication
with a common scalar factor Ls—(ms+rr44)] i' or
and that there are no other singularities there. This
does not change their Lorentz transformation proper-
ties. Then, because J&„i+p —e 0 as e —+ 0, we have

J(.)+f(p) I
=o=o. (11)

Fquation (9), the general statement of Lorentz in
variance, then implies that

D(~(J(»',p))f(p) I.=o=o (12)

The reason for this is that we are subjecting a generator
pointing in the (i,0,1) direction to the inverse of the
rotation which takes a finite vector lying along the s
axis into an infinite vector parallel to (i,0,1). Thus the
threshold conditions only involve the spins of the out
going particles and are

D&'"t& (J& )+)f(P, s= (ms+m4)') =0.
Because the linear combinations of helicity states
which correspond to a definite value of s„at threshold
are, except for a phase, the same as the corresponding
linear combinations of Wigner states, this is directly a
helicity-amplitude constraint.

The content of these relations is that if S is the total
spin of the outgoing state (Isg —s4I &S& Iss+s4I), then
only the amplitude whose spin along the y axis is as
large as possible, s„=+S, can be nonvanishing; the
others vanish. The fact that only the spins of the out-
going particles enter into this kinematical constraint
will also be true for pseudothresholds.

We can deduce how quickly the states of diferent
s„vanish by a simple repetition of this argument. The
amplitudes with s„&S—1 all vanish with e, and so are
finite when divided by e. Applying Lorentz invariance,
we get Eq. (14) applied to e 'D&'"'i(J„+)f(p), rather
than to f(p), so that we find that LD&c"t&(Jy+)$'f(p)
vanishes like c' as e —+0. This procedure may be
repeated to yield the result that LD& &(Jc„n+t)j"f(p)

We must simply calculate the infinitesimal Wigner
rotations corresponding to J(„)+ in order to find the
kinematical constraints. For the outgoing states this
is a triviality, since because J(„~+ generates rotations,
W(J&»+,Ps, 4) is just J&»+ itself. For the incoming
states, Eq. (7) gives

lim W(J&y)",Pi, s) =»iii (I PI/P, )J(.)+=0 (13)

f .h h ~e—&re+r4)

C. Pseudothresholds

(17)

At an unequal-mass pseudothreshold, s= (re,—ris4)',
substantially the preceding analysis yields constraints.
The only difhculty is that near pseudothreshold p4
approaches (—m4, 0) and both the Wigner and helicity
bases are singular. We therefore use modified Wigner
states for particle 4, obtained from states at rest by
choosing the boost to be a pure Lorentz transformation
along the s axis of im, followed by a pure Lorentz
transformation along the direction of y4. For the
indicated value of p4, the connection between the states
IP4X)ty' and the helicity states is just the same as in
Eq. (10),except for an extra phase of (—1) for fermions,
which will never enter into any relations,

The same rotation leaves all the momenta unchanged,
since pi s are as before. All the Wigner rotations are as
before, except for W(J&»+,p4), which because of the
extra L, (irr) is

W(J&„)+,P4) =iJ J.= ——J&„) . (18)

This yields the pseudothreshold conditions on the
helicity amplitudes

I:D"'(J(»+)D"'( —J&.) )]
Xf(P, s= (ms —rit4)') =0. (19)

The derivative constraints follow by exactly the same
reasoning as at threshold and are

X (d"/de") f(p) I, s ——0. (20)

In terms of the linear combinations of helicity ampli-
tudes appearing in Eq. (16), and including the threshold
singularities, the pseudothreshold behaviors of the

~9 These are the same as the transversity amplitudes of Cohen-
Tannoudji et al. If they are used to describe all the spins, then
parity conservation implies (—1)r'= —ll (intrinsic parities}.

These relations describe the kinematical behavior of
amplitudes whose final states have definite values of
s„."In terms of helicity states these are

(s„=.
I
=c„(I=~I,

Cry= (Se——TIE, (%-/2) I Se——X). (16)

The actual kinematical behavior of the helicity ampli-
tudes must also include the kinematical singularities at
thresholds. Sorrowing from Sec. IV, we use the fact
that the amplitude with s„=S has a kinematical
singularity e 8. Thus the threshold kinematical be-
havior of the amplitudes f„„h,h„con.nected to helicity
amplitudes by Eq. (16), is
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amplitudes are

(21)

Since the state (r4, E —m4~ has y-axis spin —r4, the
interpretation of these relations is just the same as
that of the threshold constraints.

D. No Conspiracies

The constraints at threshold or unequal-mass pseudo-
thresholds for the outgoing particles are the statement
that the raising operator for total y-axis spin of the
outgoing particles, S(„~+&'"", annihilates the helicity
amplitudes at the thresholds and unequal-mass pseudo-
threshold, Eqs. (14) and (19). We xnay choose the
xnomenta of the outgoing particles, Eqs. (1) and (3),
so that they vanish there, and so J&»+i'"", a differ-
ential operator which generates rotations of p3 and y4,
trivially annihilates the helicity amplitudes at the
threshold and pseudothreshold. We may thus write
these constraints as

p' +(out)+ J +(outi) j(p) —0 (22)

The object in brackets is just the s+i2: component of
the total angular momentum, acting on the final state.
Thus these constraints are as well the statement that
the raising operator for total angular momentum along
the y axis, acting on the outgoing particles, annihilates
the helicity amplitudes.

Phrased in this way, it is clear that these relations
never imply correlations between Regge trajectories,
which are supposed to describe amplitudes at large
momentum transfer, of diferent quantum numbers.
The reason is that whatever quantum numbers label a
trajectory —internal quantum numbers, parity, charge
conjugation, signature, etc.—all commute with each
component of the total angular momentum. Thus the
relations in Eq. (22) can be written so that each relation
involves amplitudes with only one set of values of those
quantum numbers. At large t then, each becomes a
constraint on one kind of Regge tra, jectory only. Since
they cannot be satisfied by the cancellation of the
contributions of two diferent kinds of Regge tra-
jectories, they are not conspiracy relations.

E. Phase of P,/P,

Throughout the preceding derivations we have taken
the phase of p, so that (Eq. (2)) p,/p, ~+i. There
is clearly no reason for preferring this choice to p, /p, —~

—i. This freedom reQects the choice of path in con-
tinuing the scattering amplitudes around the kine-
matical singularities at

i
cos8

i

= 1 (the "half-angle
factors"), i.e., whether t is given a positive or negative
imaginary part in circumventing the branch points at
the boundary of the physical region. Equivalently, the

'0 The three-momenta of a pair of equal-mass particles cannot
be chosen to vanish at s=0, so the following argument does not
apply to that case.

choice of phase of p,/p, reflects the choice of phase at
the center-of-mass scattering angle for a given value
of cos8. The choice we have made is 8 —++ioc; the
other choice is 0 —+ —i ~.

If we were to carry through the preceding with
p,/p, -+ i, we—would 6nd similar relations, but with
J~„) and J~„~+ substituted for each other everywhere.
Their significance would be just the opposite of those
we found, namely, the amplitude with minimum y spin
is nonvanishing, and amplitudes with successively
larger y spins vanish more and more strongly as
s —+ (m2+m4)2. The two kinematical configurations,
with their attendant kinematical constraints, are
transformed into one another by a rotation of x about
the s axis, and so the two sets of relations imply each
other.

An equivalent ambiguity is present in the constraints
at s= 0 in (equal mass) -+ (unequal mass) scattering.

mx' —m2' (mi' —m2')'
f12 P1 P2

s't' s
—1/2

and similarly for q34. As s —& 0, when the masses are
equal,

q ~ (O, Zi8m), (24)

while when they are unequal $8 is the (mass)' differ-
encej,

The momentum configurations depend on the masses,
and thus so will the symmetry transformations and their
associated signer generators which determine the
relations. Vile will discuss how the helicity amplitudes
behave as masses approach equality in Sec. V.

A. (Equal Mass) —& (Equal Mass)

In this case, m~=m2 and ma=m4, both relative
momenta have the form indicated, by Eq. (24). &f 8»
and e24 are chosen to lie in the xs plane (their relative
orientation determines t), then the Lorentz transfor-
mation which leaves all the momenta unaffected at
s=0 is a pure Lorentz transformation along the y axis.

III. s=o CONDITIONS

At s=0, in the center-of-mass frame, the total four-
momentum vector vanishes, and so here too there are
only two linearly independent momenta, the differences
of the initial and of the final momenta. The previous
analysis will again yield linear relations among the
helicity amplitudes. These are the constraints which
have become known as conspiracy conditions. Their
form depends upon whether the incoming and outgoing
particles have equal or unequal masses. To see why
this is so, we need only construct the relative momenta,
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These amplitudes have no singularities at s=0, so the
differential operator N„generating y-axis Lorentz
transformations annihilates the helicity amplitudes

f(p), and. thus so must the infinitesimal Wigner
rotation corresponding to this Lorentz generator.

The boosts appropriate to these momenta are a pure
s-axis Lorentz transformation through i-,'vr followed by
a y-axis rotation, and the infinitesimal Wigner rotations
can be easily evaluated. The result for each of the spins
is the same, —iJ,. Thus the (equal mass) ~ (equal
mass) conspiracy conditions are

D(J.)f(p)=0. (26)

The differential operator which generates a linear
change in center-of-mass energy, or s'f', is a sum of
generators of Lorentz transformations, along different
directions for the different particles. It may be written
as the sum of two terms, d++d, which act as raising
and lowering operators for iN„:

The spins of all the particles are involved in this
relation.

To 6nd how quickly the vanishing amplitudes vanish
as s —+ 0, we consider the linear combinations of helicity
amplitudes which are eigenvectors of D(J,),

D(J.)f(-) (P) =~f(-) (p) (27)

Lorentz transformations at s=0, because the momenta
themselves are, their difference being given by Kq.
(25). Thus the infinitesimal Wigner rotations must be
calculated for s ~ 0 as a limit, and when this is done,
they are seen to vanish. The reason is that the generator
of the Lorentz transformation is M()3+M33, which acts
as a null vector under s-axis Lorentz transformations,
and the calculation of the infinitesimal Wigner rotation
involves an infinite Lorentz transformation along the
(—z) axis, whence it vanishes.

The conspiracy relation involves only the spins of
the equal mass particles and is

LD"'(J."')D"'( —J.' ')Pf(p) = 0 (31)

If the final particles had unequal masses and the
initial particles equal masses, the conspiracy relation
would be just the same, but with initial spins replacing
final ones. If the procedure followed at thresholds is
adapted to this case, we get the derivative constraints

[D(3)(J (+))(l)D(4) (—J ( ))jr+i

X(d"/d("")")f(p)=O. (32)

Combining this with the kinematical singularity of
Sec. IV, and using the linear combinations of ampli-
tudes described by Eq. (16), we may write the s~ 0
kinematic behavior as

fiN„,d+$= +d+.
f. ) i (s'") ('~") (32')

Thus if we apply d/d(s"') to f( ) (p), we find it can be
nonvanishing for

~
m

t
= 1. Similarly, the first non-

vanishing derivative of f( )(p) is d( )/d(s'(3)( '. This
is equivalent to the kinematical constraints

f,„,(p)-(s')') i-i, s o. (29)

There are no kinematical singularities in this case, and
so this is the final form of the constraint.

B. (Unequal Mass) ) (Equal Mass)

In this case, m~/m2 and nz3 ——m4, both the limits
Eqs. (24) and (25) are involved. For definiteness, we
choose e» ——(0,0,1), and e34 in the xs plane. e34 ill(1st

approach the x axis in the limit s ~ 0 in order for t to
remain finite. Thus the two independent momenta lie
along (1,0,0,1) and (0,1,0,0), and the Lorentz trans-
formations which affect neither are generated by
1V„+J,. For this mass configuration, at s=0, the
helicity amplitudes are annihilated by N„+J„and so,
from Eq. (9), by its associated infinitesimal Wigner
rotation.

A,s always, we need the boosts corresponding to the
momenta at s=0. For the outgoing particles, they are
as described in the previous section, with rotations of
~2m. The infinitesimal Wigner rotations are, then,

W(IVY+ J„p3,4) = iJ,WJ,=—W J(„)+. (30)

The boosts corresponding to pi and p3 are divergent

These are the same relations as the pseudothreshold
results. However, the presence or absence of conspiracies
depends not just on the kinematical constraints, but
also on kinematical factors which affect the contri-
butions of trajectories to the helicity amplitudes.
Because these factors are very different at s=0 than
they are at unequal-mass pseudothresholds, we cannot
deduce anything about the necessity for conspiracies
at s=0 from the fact the kinematical constraints are
the same there as they are at pseudothresholds.

C. (Unequal Mass) ~ (Unequal Mass)

In this case all the momenta diverge as s~ 0, and
they must become parallel in order to keep t Qnite.
However, the magnitudes of the momenta diverge
inversely as their relative angle approaches zero, so
that there are two independent momenta in the limit.
If we choose e~2 along the s axis, and e34 in the xs plane,
then the independent momenta are exactly as in the
previous case. Furthermore, the momenta are just the
same as those of the unequal-mass particles in the
previous case, so the infinitesimal Wigner rotations are
just those of the unequal-mass particles in the un-
equal —+ equal conspiracy relations. We have seen that
these vanish, so that there are no conspiracy conditions
at all for (unequal mass) —+ (unequal mass) scattering
at s=0. Here we have a symmetry but no associated
relations.



KINEMATICAL CONSTRAINTS ON HELI CITY AMPLITUDES

IV. KINEMATICAL SINGULARITIES

The kinematical singularities of helicity amplitudes
can be found by examining the crossing relations, as
Wang' did, or by examining the connection between
helicity amplitudes and M functions, as Stapp did.
The methods are equivalent because the connection
between helicity amplitudes and M functions and the
assumption that M functions are free of kinematical
singularities are the ingredients that go into the
derivation of the crossing relations. For the specific
linear combinations of helicity amplitudes with which
we are concerned, Eq. (16), the latter method is
especially simple, and so we will use it.

M functions may be thought of as the pole residues
of Green's functions, with fields chosen to transform
according to the (j,0) representation of the Lorentz
group. LWe denote these representations by Dz, (h).7
Thus, under Lorentz transformations, they behave as

iV(p) =Dz(h ')iV(hp)- (33)

where, as usual, DI, is a direct product of representations
for the outgoing particles with conjugate represen-
tations for the incoming particles. The connection
between M functions and helicity amplitudes, which is
compatible with the transformation rule for helicity
amplitudes, Eq. (8), is

f(P)=D (B '(P))~(p) (34)

B(p) is, for each particle, its helicity-state boost. We
will find the kinematical singularities, and also the
associated constraints, by noting the singularities of
B(p). If the momenta are infinite, so that 3E need not
be (kinematically) finite, we will use (33) to relate it
to an M function at 6nite momenta.

For thresholds and pseudothresholds, we will use,
instead of the frame specified by Eqs. (1) and (2), one
related to it by a y-axis rotation. The helicity ampli-
tudes are the same because, by construction, they are
invariant under rotations in the scattering plane. The
incoming momenta are to be finite in the limit

(s—s,a„,a»a)'"~0, while the outgoing momenta
take the form

p, 4-+ (m, , 4, Tip, 0, +p). (35)

The singularity comes from the rotation R„(8) which
takes the momenta (m44, 0, 0, ~4) into the form of
Eq. (35). For this rotation, cos8—ising 1j4, and
absorbing all the nonsingular factors into M, we get

(36a)
oi

D'""(R*(l ))f(P)= '"""'~(p), (36b)

where an extra factor of D&'"")(R,(2im)) has been ab-
sorbed into M. This not only displays the threshold
singularities of the amplitudes Eq. (16), but is exactly
the matrix form of Eq. (17). Thus the singular con-
nection between M functions and helicity amplitudes

provides not only the singularities at threshold, but
the constraints as well.

At pseudothresholds, the previous analysis must be
modified by the inclusion of an extra factor L, (iver) in
the boost associated with particle 4. It may be anti-
commuted through the J„and absorbed into M,
yielding

(3'7a)
oi

D'-"(R (-'-))f(p) = -""""- ""'"~(p)
which are matrix forms of Eq. (21).

At s=O, in (equal mass) ~ (equal mass) scattering,
all the boosts are finite Lorentz transformations, and
so there are evidently no kinematical singularities.
Also, the constraints cannot be found by comparing
helicity amplitudes to M functions; they are the result
of a symmetry which is not produced by a kinematical
singularity. For this case the discussion of Sec. III is
complete.

For (unequal mass) ~ (equal mass) scattering, how-
ever, there are singularities associated with the di-
vergence of the components of the momenta of the
incoming particles. To use M functions at finite
momenta, we must combine Eqs. (33) and (34), as

f(p) = D.( B-'(
p) h-')~( hp), (»)

where we choose A. to be the inverse of the boost
associated with the heavier of the incoming particles.
Because the momenta of the outgoing particles become
orthogonal to the direction of motion of the incoming
particles at s=O, all the momenta hp are finite as
s —+0. Also, the Lorentz transformations B '(pi, 2)h. '
are finite, and only B '(p4, 4)h. ' are singular. Multi-
plying by Dz, ('"')(L,(ii2vr)B(p)), absorbing some non-
singular factors into M, and displaying the matrices
appropriate to the configuration of Sec. III, we have(h™m'2~

LD"'(R.(k~))O+D"'(R. (—2~))jf(p)
=(~'/s) '" "' 'M(hp) (39)

This, of course, is the matrix form of Eq. (32).We could
convert this into Eq. (37b) by simply multiplying by
D&4)(R, (m.)).

If we try to apply this analysis to (unequal mass) -+
(unequal mass) scattering, we find that the same choice
of h. results in finite hp as s~0. However, all the
B '(p)h. ' Lorentz transformations are also finite in
that limit, showing that there are no kinematic singu-
larities, and yielding no constraints. Here both the sym-
metry and singularity which appear as s= 0 are without
eGects.

V. TRANSITIONS BETWEEN MASS
CONFIGURATIONS

In view of the fact that the s=0 constraints are
diGerent, depending on whether the masses of the in-
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coming or the outgoing particles are different or not,
some remarks are appropriate as to how amplitudes
behave when two unequal masses are allowed to ap-
proach equality. We will describe these transitions and
see that although the constraints do change discon-
tinuously as two masses become equal, the amplitudes,
considered as analytic functions of s, survive the tran-
sitions quite smoothly. The description will illustrate
why it is appropriate to use equal-mass kinematical
behavior when a pair of particles have very slightly
different masses, for example, in the scattering of two
different members of an isotopic multiplet.

The transformation from the case when both the
initial and final masses are unequal to when one pair
a,re equal presents no difhculties in continuity. When
both pairs of masses are unequal, there are no con-
straints at s=0, but there are at pseudothreshold.
When two masses approach equality, the pseudo-
threshold moves to s=0, and the constraints that
obtain there are just the pseudothreshold constraints.
The smoothness of this transition is reQected in the
fact that the two momentum configurations which are
obtained by taking the limits (1) s goes to pseudo-
threshold, followed by letting the masses approach
equality, and (2) masses set equal, followed by s going
to zero, are related to each other by a filite Lorentz
transformation, despite the fact that infinite momentum
components arise in both configurations.

When one pair of masses are qual, and the other pair
are allowed to approach equality, the transition is not
so smooth. So long as the masses are unequal, there are
different singularities and constraints at s=O and at
the pseudothreshold, but when the masses become
equal, all the singularities disappear, and. there are new
constraints which look quite different from either of
the unequal-mass constraints. A picture of how this
transition occurs follows from the fact that the singu-
larities and constraints are determined by the con-
figuration of the momenta. For values of

~
s

~
many times

the (mass)' difference the momenta are substantially
the same as if the mass difference were zero, while for

~
s~ comparable to the (mass)' difference the momenta

are rapidly varying functions of s. They become singular
at s=O and at pseudothreshold. Thus we can divide
the range of s into two regions: an outer region, ~s~

many times the (mass)' difference, and an inner region.
Equal-mass kinematics governs the outer region, while
amplitudes fluctuate rapidly in the inner region. (Of
course, these Quctuations are such as to satisfy the
unequal-mass constraints. ) As the mass difference
approaches zero, the inner region becomes narrower,
and the Quctuations are confined to a smaller region.
When the mass difference becomes zero, the inner
region elapses to a point, and the fluctuations become
removable discontinuities in the amplitudes. With
these point discontinuities neglected, the entire range
of s becomes the outer region, and the equal-mass
kinematical constraints hold at s=O. This is the be-
havior of the amplitudes which allows a very different
set of kinematical constraints and singularities depen-
ding upon whether a pair of masses are equal or not.

This picture of how helicity amplitudes behave when
a pair of masses become equal is equivalent to the
observation that the unequal-mass constraints vanish
when masses become equal. " They are equivalent
because an analytic function with a zero is small over
a region comparable to the inverse coefficient of the
zero, and so the vanishing of the inverse coeKcient
(i.e., the disappearance of the zero) is the same as the
confining of the region in which unequal-mass kine-
matics is relevant to a null range of s.
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